Diterpenoid C-Ring Bromoketones.
 I. ent-3 β-Acetoxy-11 α-bromoisopimar-8(14)-en-12-one

By Polly Sommerville and Michael Laing
Chemistry Department, University of Natal, Durban 4001, South Africa

(Received 15 March 1976; accepted 9 April 1976)

Abstract

C}_{22} \mathrm{O}_{3} \mathrm{H}_{33} \mathrm{Br}, M=425\). Monoclinic $P 2_{1}, a=$ 7.29 (1), $b=13.88$ (1), $c=11.27$ (1) $\AA, \beta=106.6$ (1) ${ }^{\circ}$, $V=1092 \AA^{3}, D_{c}=1 \cdot 30 \mathrm{~g} \mathrm{~cm}^{-3}, Z=2, \mu($ Mo $K \alpha)=20 \cdot 2$ $\mathrm{cm}^{-1} . R=0.058$ for 1330 observed data; $\mathrm{Br}, 8 \mathrm{C}$ and 3 O atoms anisotropic and 15 H atoms included. The Br is pseudo-axial above the mean plane of ring C, cis to the H on $\mathrm{C}(9)$. The $\mathrm{C}(12)$ keto- $\mathrm{O}(2)$ is below the mean plane of ring C.

Introduction. From the heartwood of Cleistanthus schlechteri var. schlechteri were isolated the aromatic diterpene cleistanthol (McGarry, Pegel, Phillips \& Waight, 1971) and three related pimarane diterpenes (Candy, Pakshong \& Pegel, 1970). Bromination of an 8(14)-en-12-one derivative yielded the 11-bromo compound (Fig. 1) which resisted dehydrobromination across the $\mathrm{C}(11)-\mathrm{C}(9)$ bond. The conformation of ring C, the nature of the B / C ring junction and the orientation of the Br atom were therefore of great interest and because these could not be obtained from the available chemical evidence, the crystal structure was determined.
Suitable crystals were prepared by Mr C. P. GorstAllman. Data were collected from a crystal $0.3 \times 0.4 \times$ 0.5 mm on a Philips four-circle diffractometer with graphite-monochromated Mo $K \alpha$ radiation ($\lambda=0.7107$ \AA) for θ between 3 and 23°. The $\omega-2 \theta$ scan mode was used; the scan width was $1 \cdot 2^{\circ}$, each peak was scanned for 30 s and the background was counted for 30 s for each peak. Of the 1591 reflexions measured, 1330 were classed as observed, $I>1 \cdot 65 \sigma(I)$. Three reflexions were used as standards and their intensities were remeasured every hour; no decomposition was detected. The intensities were corrected for Lorentz and polarization effects only. A temperature-sharpened Patterson map gave the coordinates of the Br atom (y arbi-

Fig. 1. View of molecule down x showing the numbering system.
trarily chosen as 0.25). Subsequent Fourier maps yielded the coordinates of the lighter atoms. The structure was refined by block-diagonal least squares with the Br and 11 peripheral atoms ($8 \mathrm{C}, 3 \mathrm{O}$) anisotropic; the 15 H atoms bonded directly to the main skeleton were included in the structure factor calculations. The final R was 0.058 for 1330 observed data.* Weighting

[^0]Table 1. Atomic coordinates and thermal parameters Fractional atomic coordinates and isotropic thermal parameters. All H atoms were assigned $B=4.0 \AA^{2}$.

	x	y	z	$B\left(\AA^{2}\right)$
Br	$0 \cdot 3923$ (2)	0.25	$1 \cdot 1284$ (1)	
$\mathrm{O}(1)$	$0 \cdot 1297$ (10)	$0 \cdot 1520$ (6)	$0 \cdot 3987$ (5)	
$\mathrm{O}(2)$	0.4281 (13)	0.4810 (7)	1.0366 (8)	
$\mathrm{O}(3)$	-0.0483 (17)	0.0275 (10)	0.4199 (8)	
C(1)	$0 \cdot 2049$ (11)	0.2567 (11)	0.7190 (7)	$3 \cdot 18$ (16)
C(2)	$0 \cdot 1225$ (12)	0.2377 (10)	0.5766 (7)	3.57 (19)
C(3)	0.2099 (15)	$0 \cdot 1600$ (8)	$0 \cdot 5308$ (9)	3.96 (22)
C(4)	0.4318 (15)	0.1691 (8)	0.5565 (9)	3.99 (23)
C(5)	$0 \cdot 5124$ (12)	$0 \cdot 1837$ (7)	0.7018 (8)	2.77 (18)
C(6)	0.7359 (14)	$0 \cdot 1894$ (8)	0.7440 (9)	3.65 (21)
C(7)	0.8081 (13)	$0 \cdot 1817$ (8)	$0 \cdot 8868$ (8)	$3 \cdot 26$ (20)
C(8)	0.7162 (10)	$0 \cdot 2540$ (10)	0.9447 (6)	2.39 (14)
C(9)	$0 \cdot 5017$ (10)	$0 \cdot 2487$ (10)	$0 \cdot 9031$ (6)	$2 \cdot 21$ (14)
C(10)	0.4225 (10)	$0 \cdot 2689$ (7)	0.7586 (6)	$2 \cdot 19$ (16)
C(11)	0.4139 (13)	0.3149 (8)	0.9802 (9)	3.39 (20)
C(12)	0.5169 (15)	$0 \cdot 4075$ (9)	1.0302 (9)	$4 \cdot 31$ (23)
C(13)	0.7353 (15)	$0 \cdot 4074$ (9)	1.0734 (9)	$4 \cdot 15$ (22)
C(14)	0.8154 (14)	$0 \cdot 3210$ (8)	1.0208 (9)	$3 \cdot 60$ (21)
C(15)	0.8013 (17)	$0 \cdot 4070$ (11)	1.2179 (10)	
C(16)	1.0130 (20)	$0 \cdot 4173$ (12)	1.2739 (13)	
C(17)	0.8061 (21)	0.5018 (10)	1.0220 (14)	
C(18)	0.5067 (19)	0.0692 (11)	0.5236 (11)	
C(19)	0.4850 (14)	0.2493 (19)	0.4780 (7)	
C(20)	0.4742 (15)	$0 \cdot 3711$ (8)	0.7289 (9)	
C(21)	0.0044 (18)	0.0803 (11)	0.3575 (10)	
C(22)	-0.0722 (20)	0.0868 (13)	$0 \cdot 2142$ (10)	
H(9)	0.462	0.182	0.917	
H(11)	$0 \cdot 291$	$0 \cdot 332$	0.917	
H(1.1)	$0 \cdot 172$	$0 \cdot 201$	0.765	
$\mathrm{H}(1.2)$	0.146	$0 \cdot 317$	$0 \cdot 740$	
H(15.1)	0.761	$0 \cdot 344$	$1 \cdot 247$	
H(15.2)	0.737	0.462	$1 \cdot 248$	
H(7.1)	$0 \cdot 950$	$0 \cdot 192$	$0 \cdot 914$	
H(7.2)	0.777	$0 \cdot 116$	$0 \cdot 912$	
H(6.1)	0.778	0.252	0.717	
H(6.2)	0.790	$0 \cdot 135$	0.706	
H(2.1)	-0.017	0.223	0.559	
$\mathrm{H}(2.2)$	$0 \cdot 141$	$0 \cdot 298$	0.532	
H(14)	0.958	0.314	1.046	
H(5)	$0 \cdot 469$	$0 \cdot 124$	0.736	
H(3)	$0 \cdot 184$	$0 \cdot 102$	0.576	

Table 1 (cont.)

Anisotropic thermal-motion parameters $\left(\times 10^{4}\right)$. The expression is $\exp \left[-\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+h k \beta_{12}+h l \beta_{13}+k l \beta_{23}\right)\right]$.

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
	$280(2)$	$116(1)$	$61(1)$	$-59(5)$	$139(2)$	$-16(3)$
Br	$208(18)$	$101(7)$	$46(6)$	$-60(19)$	$-32(17)$	$-4(11)$
$\mathrm{O}(1)$	$208(30)$	$151(11)$	$174(24)$	$50(27)$	$-61(15)$	
$\mathrm{O}(2)$	$416(30)$	$74(7)$	151			
$\mathrm{O}(3)$	$666(42)$	$208(14)$	$91(10)$	$-495(42)$	$-101(31)$	$57(18)$
$\mathrm{C}(15)$	$293(34)$	$84(10)$	$99(13)$	$19(33)$	$-35(33)$	$-65(21)$
$\mathrm{C}(16)$	$332(40)$	$101(13)$	$146(16)$	$-27(40)$	$-105(40)$	$-66(25)$
$\mathrm{C}(17)$	$418(45)$	$37(8)$	$189(19)$	$-77(32)$	$110(46)$	$-25(21)$
$\mathrm{C}(18)$	$317(36)$	$119(13)$	$99(14)$	$53(36)$	$14(36)$	$-118(22)$
$\mathrm{C}(19)$	$261(25)$	$131(10)$	$49(8)$	$-57(54)$	$97(23)$	$25(32)$
$\mathrm{C}(20)$	$213(28)$	$43(7)$	$69(10)$	$18(23)$	$21(26)$	$42(14)$
$\mathrm{C}(21)$	$327(36)$	$106(12)$	$58(10)$	$-129(35)$	$3(31)$	$-23(18)$
$\mathrm{C}(22)$	$417(44)$	$169(17)$	$43(11)$	$-124(47)$	$-98(34)$	$-22(22)$

Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$, and least-squares planes
Some intramolecular bond lengths ($\pm 0.01 \AA$) mainly associated with ring C and the acetate group

$\mathrm{C}(22)-\mathrm{C}(21)$	1.55	$\mathrm{C}(11)-\mathrm{C}(12)$	1.51
$\mathrm{C}(21)-\mathrm{O}(1)$	1.16	$\mathrm{C}(12)-\mathrm{C}(13)$	1.52
$\mathrm{C}(21)-\mathrm{O}(1)$	1.33	$\mathrm{C}(13)-\mathrm{C}(14)$	1.53
$\mathrm{O}(1)-\mathrm{C}(3)$	1.44	$\mathrm{C}(14)-\mathrm{C}(8)$	1.33
$\mathrm{C}(18)-\mathrm{C}(4)$	1.57	$\mathrm{C}(11)-\mathrm{Br}$	1.94
$\mathrm{C}(19)-\mathrm{C}(4)$	1.54	$\mathrm{C}(12)-\mathrm{O}(2)$	1.22
$\mathrm{C}(10)-\mathrm{C}(20)$	1.53	$\mathrm{C}(13)-\mathrm{C}(15)$	1.56
$\mathrm{C}(7)-\mathrm{C}(8)$	1.46	$\mathrm{C}(13)-\mathrm{C}(17)$	1.58
$\mathrm{C}(8)-\mathrm{C}(9)$	1.50	$\mathrm{C}(15)-\mathrm{C}(16)$	1.50

Bond angles associated with ring $C\left(\pm 1^{\circ}\right)$

$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	113	$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{Br}$	111
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(11)$	113	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{Br}$	103
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(14)$	122	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(2)$	121
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(14)$	124	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{O}(2)$	120
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)$	111	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(15)$	108
$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(12)$	119	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(15)$	111
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	119	$\mathrm{C}(15)-\mathrm{C}(3)-\mathrm{C}(17)$	111
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	111	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(17)$	108
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(8)$	127	$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{C}(16)$	114

Some intramolecular non-bonded distances

$\mathrm{C}(20) \cdots \mathrm{C}(19)$	3.31	$\mathrm{Br} \cdots \cdots \mathrm{C}(1)$	4.42
$\mathrm{C}(20) \cdots \mathrm{O}(2)$	3.89	$\mathrm{O}(1) \cdots \mathrm{C}(19)$	2.83
$\mathrm{C}(20) \cdots \mathrm{C}(17)$	3.93	$\mathrm{O}(1) \cdots \mathrm{C}(18)$	2.94

Some least-squares planes of the form $A x+B y+C z^{*}=D$, where A, B and C are the direction cosines of the normal to the plane referred to the orthogonal crystallographic axes. The deviations in \AA of the most relevant atoms from the planes are given in square brackets.

Atoms defining the plane
$\mathrm{C}(7), \mathrm{C}(8), \mathrm{C}(9), \mathrm{C}(13), \mathrm{C}(14)$

$$
\begin{array}{ccc}
A & B & C \\
-0.194 & -0.580 & 0.791
\end{array}
$$

$[\mathrm{C}(7)-0.04, \mathrm{C}(8) 0.04, \mathrm{C}(9) 0.00, \mathrm{C}(13)-0.05, \mathrm{C}(14) 0.05$, $\mathrm{C}(10)-1 \cdot 38, \mathrm{C}(11) 0 \cdot 30, \mathrm{C}(12)-0 \cdot 13, \mathrm{C}(15) 1 \cdot 19, \mathrm{C}(16) 1 \cdot 32$, $\mathrm{C}(17)-1 \cdot 38, \mathrm{O}(2)-0 \cdot 54, \mathrm{Br} 2 \cdot 21]$

Atoms defining the plane
$\mathrm{C}(8), \mathrm{C}(9), \mathrm{C}(11), \mathrm{C}(12), \mathrm{C}(13), \mathrm{C}(14)$

$$
\begin{array}{ccc}
A & B & C \\
-0.159 & -0.545 & 0.823
\end{array}
$$

$[\mathrm{C}(8)-0.02, \mathrm{C}(9)-0.12, \mathrm{C}(11) 0.20, \mathrm{C}(12)-0.15, \mathrm{C}(13) 0.01$, $\mathrm{C}(14) 0 \cdot 07, \mathrm{C}(7)-0.12, \mathrm{C}(10)-1 \cdot 54, \mathrm{C}(15) 1 \cdot 29, \mathrm{C}(17)-1 \cdot 27$, $\mathrm{O}(2)-0 \cdot 54, \mathrm{Br} 2 \cdot 11]$
was proportional to $1 / \sigma(F)$. Scattering factors for neutral atoms were used (International Tables for X ray Crystallography, 1962); that of Br was corrected for anomalous dispersion. Final positional and thermal parameters are given in Table 1, with estimated standard deviations in parentheses; bond lengths and angles are in Table 2.

Discussion. The results confirm that the structure deduced from the chemical work is correct. Ring A is a near perfect chair; ring B is distorted by the double bond at the junction $C(8)$, the five C atoms associated with the double bond being closely coplanar. Ring C is approximately planar, bent away from the mean plane of rings A and B. The torsion angles are $\mathrm{Br}-$ $\mathrm{C}(11) \cdots \mathrm{C}(13)-\mathrm{C}(15) \quad 12, \quad \mathrm{Br}-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(2) \quad 93$, $\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(17) 44, \mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(12)$ 93, $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{Br} 148, \mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{Br} 87$, $\mathrm{H}(9)-\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{Br} 31, \mathrm{H}(9)-\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{H}(11) 92^{\circ}$. The Br is pseudo-axial cis relative to $\mathrm{H}(9)$, consistent with the resistance to dehydrobromination. Br and $\mathrm{C}(20)$ are on opposite sides of the molecule. All bond lengths and angles are normal: the non-bonded contacts between the methyl groups are normal. Important non-bonded distances are $\mathrm{Br} \cdots \mathrm{C}(1) 4 \cdot 42$, $\mathrm{C}(19) \cdots \mathrm{C}(20) 3 \cdot 31, \mathrm{C}(17) \cdots \mathrm{C}(20) 3 \cdot 93, \mathrm{C}(20) \cdots \mathrm{O}(2)$ $3.89 \AA$. The ethyl and acetate groups are ordered and a difference map shows no trace of solvent of crystallization.

We thank the South African Council for Scientific and Industrial Research for generous financial support, the National Physical Research Laboratory, CSIR, for collecting the intensities, and Dr K. H. Pegel for supplying the sample.

References

Candy, H. A., Pakshong, J. M. \& Pegel, K. H. (1970). J. Chem. Soc. (C), pp. 2536-2538.

International Tables for X-ray Crystallography (1962). Vol. III, pp. 202, 203, 206, 216. Birmingham: Kynoch Press. McGarry, E. J., Pegel, K. H., Phillips, L. \& Waight, E. S. (1971). J. Chem. Soc. (C), pp. 904-909.

[^0]: * A table of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31786 (8 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

